
Secure Coding -

Office of the Basic
Education Commission

1. ความส าคัญของการพัฒนาแอปพลิเคชันอย่างปลอดภัย

2. ภัยจากการใช้ AI ในการ Coding

3. มาตรฐานที่ช่วยในการพัฒนาแอปพลิเคชันอย่างปลอดภัย

4. OWASP TOP 10 คืออะไร

5. ตัวอย่างการ พัฒนาแอปพลิเคชันที่ไม่ปลอดภัย, วิธีการแก้ไข

6. แนวทางที่ควรด าเนินการส าหรับการพัฒนาแอปพลิเคชันอย่างปลอดภัย

7. รูปแบบการพัฒนาแอปพลิเคชันในปัจจุบัน และเครื่องมือที่ใช้

8. สรุปภาพรวมการอบรม

9. ตอบค าถามผู้เข้าอบรม

สารบัญ

ป้องกันการโจมตีทางไซเบอร์

ปกป้องข้อมูลส่วนบุคคล

ลดค่าใช้จ่ายในระยะยาว

ความส าคัญของการพัฒนาแอปพลิเคชันอย่างปลอดภัย
การพัฒนาแอปพลิเคชันอย่างปลอดภัยเป็นสิ่งส าคัญอย่างยิ่งในยุคดิจิทัลปัจจุบัน โดยมีหลาย

เหตุผลที่เน้นความส าคัญของการมีแนวปฏิบัติที่ปลอดภัยในการพัฒนาแอปพลิเคชัน ดังนี้

เพิ่มความน่าเชื่อถือและความปลอดภัยขององค์กร

การปฏิบัติตามมาตรฐานและข้อก าหนดทางกฎหมาย

การส่งเสริมแนวปฏิบัติที่ดีในองค์กร

ภัยเงียบของการใช ้AI ช่วยในการเขียนโค๊ด

ภัยที่อาจเกิดจากการใช ้AI
การรั่วไหลของข้อมูลที่เป็นความลับ (Leaking Sensitive Data)

นักพัฒนาอาจเผลอใส่ API Keys, รหัสผ่าน หรือข้อมูลโครงสร้างพื้นฐานขององค์กรลงใน Prompt เพื่อให้ AI ช่วย
แก้ปัญหา ซึ่งข้อมูลเหล่านี้อาจถูกน าไปใช้เทรนโมเดลต่อและอาจหลุดไปสู่สาธารณะได้

ช่องโหว่ความปลอดภัยในโค้ด (Security Vulnerabilities)
AI มักจะแนะน าโค้ดที่ "ท างานได"้ แต่ไม่ได้ "ปลอดภัยที่สุด" เช่น โค้ดที่เสี่ยงต่อ SQL Injection, Cross-Site Scripting
(XSS) หรือการไม่ท า Input Validation

ภัยที่อาจเกิดจากการใช ้AI

การละเมิดลิขสิทธิ์ซอฟต์แวร์ (Intellectual Property & Licensing)
AI อาจน าโค้ดที่มีสัญญาอนุญาตแบบ Open Source ที่เข้มงวด เช่นห้ามน ามาใช้ในเชิงพาณิชย์ มาเป็นค าแนะน า หากเรา
น าไปใช้ในโปรเจกต์เชิงพาณิชย์โดยไม่ตรวจสอบ อาจถูกฟ้องร้องภายหลังได้

ภัยที่อาจเกิดจากการใช ้AI

การเข้าใจผิดของ AI เรื่องแพ็กเกจ (AI Package Hallucination)
AI อาจแนะน าให้ใช้ Library หรือ Package ที่ไม่มีอยู่จริง แฮกเกอร์อาจสร้าง Package ปลอมในชื่อนั้นๆ ทิ้งไว้ (Supply
Chain Attack) เมื่อนักพัฒนาสั่งติดต้ังตาม AI ก็จะได้รับมัลแวรท์ันที

ภัยที่อาจเกิดจากการใช ้AI

การขาดความเข้าใจในสิ่งที่เขียน (Skill Erosion)
หากนักพัฒนา Copy-Paste โค้ดโดยไม่พยายามท าความเข้าใจ เมื่อเกิด Bug ร้ายแรงในระบบ ท าใหห้าจุดผิดเกิด bug
และแก้ไขได้ยาก

ภัยที่อาจเกิดจากการใช ้AI

• ทุกบรรทัดที่ AI เขียน ต้องถูก Review โดยมนุษย์ที่มีความเช่ียวชาญเสมอ
• ใช้เครื่องมืออย่าง SAST (Static Application Security Testing) เพื่อสแกนโค้ดทุกครั้ง

ก่อน Merge
• เวลาเราสั่ง AI เราควรระบุไปเลยว่า 'ให้เขียนโค้ดโดยค านึงถึงความปลอดภัยระดับสูงสุด'

หรือ 'ห้ามใช้ Library ภายนอกที่ไม่ได้มาตรฐาน’
• องค์กรต้องมี Guideline ที่ชัดเจนว่าข้อมูลไหนใส่ใน AI ได้ (Non-sensitive) และข้อมูล

ไหนห้ามใส่เด็ดขาด“

แนวทางการแก้ไข้

ตัวอย่างมาตรฐานในการ
พัฒนาแอปพลิเคชัน

OWASP (Open Web Application
Security Project)

NIST (National Institute of
Standards and Technology)

CERT Secure Coding Standards

Microsoft Security Development
Lifecycle (SDL)

CIS (Center for Internet Security)

การเขียนโค้ดอย่างปลอดภัยเป็นกระบวนการ
ที ่จ า เป ็นต ้อ งปฏ ิบ ัต ิต ามมาตรฐานและ
แนวทางที่ถูกต้องเพื่อป้องกันช่องโหว่และการ
โจมต ีทางไซเบอร ์ ม ีหลายมาตรฐานและ
แนวทาง ที ่ช ่วย ให ้ก าร เข ียนโค ้ดม ีความ
ปลอดภัยยิ่งขึ้น

มาตรฐานที่ช่วยในการ
พัฒนาแอปพลิเคชัน
อย่างปลอดภัย

OWASP TOP 10 (2025) คืออะไร
รายการช่องโหว่ด้านความปลอดภัยท่ีพบบ่อยและมีความส าคัญมากที่สุดในแอปพลิเคชันเว็บ จัดท าโดย Open Web
Application Security Project (OWASP) ซึ่งเป็นองค์กรไม่แสวงหาผลก าไรท่ีมุ่งเน้นการปรับปรุงความปลอดภัยของ

ซอฟต์แวร์ รายการนี้จะถูกอัปเดตเป็นระยะเพื่อสะท้อนถึงภัยคุกคามและช่องโหว่ที่พบบ่อยที่สุดในขณะนั้น

01 02 03

06 07 08

A8 - Software or
Data Integrity

Failures

A7 - Authentication
Failures

A3 - Software
Supply Chain

Failures

A2 - Security
Misconfiguration

A1 - Broken Access
Control

A6 - Insecure
Design

04 05

09 10

A10 - Mishandling
of Exceptional

Conditions

A9 - Security
Logging & Alerting

Failures

A5 - InjectionA4 - Cryptographic
Failures

อ้างอิงตาม : https://owasp.org/Top10/2025/

OWASP TOP 10 (2025) คืออะไร

อ้างอิงตาม : https://owasp.org/Top10/2025/

A1 - Broken Access Control (การควบคุมการเข้าถึงที่ไม่ถูกต้อง)

การที่ผู้ใช้สามารถเข้าถึงข้อมูลหรือฟังก์ชันที่ตนเองไม่มีสิทธิ์ ระบบควรจะมีการจ ากัดสิทธิ์ (Authorization) เพื่อให้
User ทั่วไปเข้าได้เฉพาะข้อมูลของตนเอง และ Admin เท่านั้นที่เข้าหลังบ้านได้ แต่หากระบบมีช่องโหว่นี้ Hacker จะ
สามารถข้ามผ่านข้อจ ากัดเหล่านั้นได้

01

อ้างอิงตาม : https://owasp.org/Top10/2025/A01_2025-Broken_Access_Control/

ตัวอย่างการโจมตี Scenario #1:

แอปพลิเคชันใช้ข้อมูลที่ยังไม่ได้รับการตรวจสอบในการเรียกใช้ SQL เพื่อเข้าถึงข้อมูลของบัญชี

// น าค่าที่รับมาจากผู้ใช้ไปใส่ในค าสั่ง SQL
statement.setString(1, requestedAccountId);
// ประมวลผลและดึงข้อมูลออกมา
ResultSet accountData = statement.executeQuery();

ผู้โจมตีเพียงแค่แก้ไขพารามิเตอร์ 'requestedAccountId' ในเบราว์เซอร์เพื่อส่งหมายเลขบัญชีที่
ต้องการ หากไม่มีการตรวจสอบอย่างถูกต้อง ผู้โจมตีสามารถเข้าถึงข้อมูลบัญชีผู้ใช้อื่นๆ ได้
https://example.com/app/accountInfo?acct=2

ผู้โจมตีเพียงแค่ทราบ URL ของแอดมิน จากนั้นใช้เบราว์เซอร์เข้าไปยัง URL เป้าหมาย
ที่ปกติแล้วต้องใช้สิทธิ์ของแอดมินส าหรับการเข้า URL นั้นโดยตรง

 https://example.com/app/getappInfo
 https://example.com/app/admin_getappInfo

หากผู้ใช้ที่ไม่ได้รับการยืนยันสามารถเข้าถึงหน้าใดหน้าหนึ่งได้ นั่นถือว่าเป็นช่องโหว่
หากผู้ใช้ที่ไม่ใช่ผู้ดูแลระบบสามารถเข้าถึงหน้าผู้ดูแลระบบได้ นี่ก็เป็นช่องโหว่เช่นกัน

ตัวอย่างการโจมตี Scenario #1:

ใช้หลักการ "Deny by Default" (ปฏิเสธไว้ก่อน)
ระบบควรจะ ไม่อนุญาต ให้ใครเข้าถึงอะไรเลย จนกว่าจะมีการระบุสิทธิ์ที่ชัดเจน

ตรวจสอบค่า parameter ที่ฝั่ง Client และ Sever ไม่ควรตรวจสอบแค่ฝั่งใดฝั่งเดียว

การออกแบบควรค านึงถึงสิทธิ์ของผู้ใช้งานในแต่ละสิทธิ์ ให้ตรงตามการ
ท างานของแอปพลิเคชันนั้นๆ

วิธีการแก้ไข และป้องกัน

02A2 - Security Misconfiguration
(การตั้งค่าความปลอดภัยที่ผิดพลาด)

ช่องโหว่ที่เกิดจากการก าหนดค่าระบบหรือแอปพลิเคชันอย่างไม่ปลอดภัย
เช่น การใช้ค่าดั้งเดิมที่ไม่ปลอดภัย หรือการเปิดใช้งานฟังก์ชันที่ไม่จ าเป็น

อ้างอิงตาม : https://owasp.org/Top10/2025/A02_2025-Security_Misconfiguration/

ตัวอย่างการโจมตี
Scenario #1:

Scenario #2:

เซิร์ฟเวอร์มาพร้อมกับแอปพลิเคชันตั้งต้นโดยไม่ได้มีการลบแอปพลิเคชันที่ไม่จ าเป็นออกจาก
เซิร์ฟเวอร์ แอปพลิเคชันที่ติดมาด้วยนั้น อาจช่องโหว่ด้านความปลอดภัยที่มักถูกผู้โจมตีใช้เพื่อ
โจมตเีซิร์ฟเวอร์ เช่น บัญชีเริ่มต้นไม่ได้ถูกเปลี่ยนแปลง ผู้โจมตีจะเข้าสู่ระบบด้วยรหัสผ่านเริ่มต้น
และยึดครองความควบคุมในระบบไป

Directory Listing ถูกเปิดใช้งานบนเซิร์ฟเวอร ์ผู้โจมตีพบว่าสามารถเรียกดูรายการ Directory ได้
ท าใหผู้้โจมตสีามารถท าการดไูฟล์ต่างๆที่อยู่บนเซิร์ฟเวอร์ได้ ซึ่งอาจพบไฟล์ Source code หรือ
Config ต่างๆ จากนั้นผู้โจมตใีชช้่องโหวท่ี่พบเพื่อในการโจมตรีะบบต่อไป

สร้างมาตรฐานการตั้งค่าระบบที่ปลอดภัย และน ามาใช้กับทุกสภาพแวดล้อม (Dev,
Test(Uat), Prod) ให้เหมือนกัน

ลบซอฟต์แวร์, ตัวอย่างแอปพลิเคชัน, หน้าเว็บทดสอบ, และบัญชีผู้ใช้ที่
ไม่จ าเป็นออกให้หมด

ใช้เครื่องมือสแกนช่องโหว่อัตโนมัติเพื่อตรวจสอบการตั้งค่าที่ผิดพลาดเป็นระยะ

วิธีการแก้ไข และป้องกัน

03 A3 - Software Supply Chain Failures
(ความล้มเหลวของซอฟต์แวร์น ามาใช้)

เป็นการโจมตีที่ไม่ได้มุ่งเป้าไปที่ซอฟต์แวร์ตัวหลักโดยตรง
แต่โจมตีจาก "แหล่งที่มา" หรือ "กระบวนการสร้าง" แทน
ท าให้ซอฟต์แวร์ที่ผู้ใช้ได้รับไปนั้นไม่ปลอดภัยตั้งแต่แรก เช่น
การใช้ฟังก์ชันที่ล้าสมัย, การใช้ซอฟต์แวร์ third- party
ที่มีช่องโหว่

อ้างอิงตาม : https://owasp.org/Top10/2025/A03_2025-Software_Supply_Chain_Failures/

ตัวอย่างการโจมตี

Vender ที่เชื่อถือถูกโจมตดี้วยมัลแวร์ เมื่อใช้ซอฟต์แวร์ของ Vender
ท าให้เครื่องของคุณถูกโจมตีไปด้วย
ตัวอย่าง
- SolarWinds ในปี 2019

- ผู้โจมตีได้เจาะเข้าสู่ระบบภายในของ SolarWinds และฝัง
โค้ดมลัแวร์ เข้าไปในไฟล์ไบนารีของซอฟต์แวร์

- เมื่อ SolarWinds ปล่อยอปัเดตซอฟต์แวร์ ที่ถูกฝังโค้ต
เมื่อลูกค้าท าการอัปเดตซอฟต์แวรท์ี่ถูกฝังโค้ดมัลแวร์ ท าให้
เครื่องของลูกค้าจะถูกติดตัง้มัลแวรโ์ดยไม่รู้ตัวSolarWinds
ประมาณ 18,000 องค์กรได้รับผลกระทบ

- Bybit (เดือนกุมภาพันธ์ 2025)
- ผู้โจมตีได้มุ่งเป้าโจมตไีปที่ Safe{Wallet} ซึ่งเป็นโซลูชัน Third-

party ที่ Bybit ใช้
- โดยผู้โจมตีสามารถ bypass การตรวจสอบท าให้สามารถท าการ

โอนย้ายเงินจากระบบออกไปได้
- เหตุการนีท้ าให้สูญเสียเงินไปประมาณ 1.5 พันล้านดอลลาร์ส

ตัวอย่างการโจมตี

ลบ dependencies ที่ไม่ได้ใช้, องค์ประกอบ, ไฟล์, และเอกสารที่ไม่จ าเป็นออก

ท าการตรวจสอบเวอร์ชั่นที่ใช้ ทั้งฝั่งไคลเอนต์และเซิร์ฟเวอร์ (เช่น เฟรมเวิร์ก, ไลบรารี) โดย
ใช้เครื่องมือ เช่น versions, OWASP Dependency Check, retire.js ฯลฯ

เฝ้าระวังแหล่งข้อมูลอย่างต่อเนื่อง เช่น Common Vulnerability and Exposures (CVE)
และ National Vulnerability Database (NVD) ส าหรับช่องโหว่ในส่วนประกอบที่คุณใช้
ใช้เครื่องมือวิเคราะห์ส่วนประกอบซอฟต์แวร์ (Software Composition Analysis)

วิธีการแก้ไข และป้องกัน

A4 - Cryptographic Failures
(ความผิดพลาดของการตั้งค่าการเข้ารหัส)

04
เป็นช่องโหว่ที่เกิดจากการใช้การเข้ารหัสที่ไม่เหมาะสม เช่น การใช้การเข้ารหัสที่ไม่ปลอดภัยหรือการจัดการกุญแจ
เข้ารหัส(Encryption key) ที่ไม่ดี

อ้างอิงตาม : https://owasp.org/Top10/2025/A04_2025-Cryptographic_Failures/

ตัวอย่างการโจมตี
Scenario #1:

Scenario #2:

แอปพลิเคชันไม่ได้บังคับใช้ HTTPS ท าให้เมื่อผู้ใช้ล็อกอินผ่าน Wi-Fi สาธารณะ
แฮ็กเกอร์สามารถดักจับ Cookie และสวมรอยเป็นผู้ใช้คนนั้นได้ทันที

ฐานข้อมูลเก็บเลขบัตรเครดิตโดยใช้การเข้ารหัสแบบ AES-128 แต่ตัว Encryption
Key กลับถูกเก็บไว้ในไฟล์ config.js บนเซิร์ฟเวอร์เดียวกัน หากแฮก็เกอร์เข้าถึงไฟล์
ได้ ข้อมูลบัตรทั้งหมดก็จะไม่เป็นความลับอีกต่อไป

ระบุว่าข้อมูลไหน "อ่อนไหว" (เช่น เลขบัตรประชาชน, ข้อมูลสุขภาพ) เพื่อรับรองว่าข้อมูล
เหล่านั้นจะได้รับการป้องกันสูงสุด

บังคับใช้ HSTS (HTTP Strict Transport Security) เพื่อให้มั่นใจว่าการเชื่อมต่อ
ทั้งหมดถูกเข้ารหัสเสมอ

จัดเก็บรหัสผ่านโดยใช้ฟังก์ชันแฮชที่แข็งแกร่งและมีการเพิ่มค่าซอลต์ พร้อมด้วย delay
factor เช่น Argon2, scrypt, bcrypt หรือ PBKDF2

วิธีการแก้ไข และป้องกัน

อย่าใช้โปรโตคอลเก่า เช่น FTP และ SMTP ส าหรับการขนส่งข้อมูลที่มีความส าคัญ

ปิดการใช้งาน TLS 1.0/1.1 และหันมาใช้ TLS 1.2 หรือ 1.3 เท่านั้น

05

A5 – Injection (การแทรกค าสั่ง)

ช่องโหว่ที่เกิดจากการน าข้อมูลที่ไม่น่าเชื่อถือมาใช้ในค าสั่งเช่น SQL Injection, Command Injection ท าให้
เซิร์ฟเวอร์มีการประมวลผลค าสั่งอันตรายที่ไม่ได้เป็นจุดมุ่งหมายของแอปพลิเคชัน

อ้างอิงตาม : https://owasp.org/Top10/2025/A05_2025-Injection/

ตัวอย่างการโจมตี
Scenario #1: แอปพลิเคชันใช้ข้อมูลที่ไม่น่าเชื่อถือในการสร้างค าสั่ง SQL ที่มีช่องโหว่

ดังต่อไปนี้:

SELECT name FROM user WHERE name=‘admin’ AND
password=‘xDK9&GoP1’

SELECT name FROM user WHERE name=‘administrator' or 1=1
--’ AND passwd=‘xDK9&GoP1’

ตัวอย่างการโจมตี

ตัวอย่างการโจมตี
Scenario #2:
การโจมตีแบบ SQL Injection โดยการปรับเปลี่ยนค่า id ในเบราว์เซอร์เพื่อส่ง
ค่า ' UNION SLEEP(10);-- นั้นสามารถท าให้เกิดการโจมตีและส่งผลกระทบต่อ
ฐานข้อมูลและแอปพลิเคชันได้อย่างมาก ดังตัวอย่าง:

 http://example.com/app/accountView?id=' UNION SELECT
SLEEP(10);--

การโจมตีแบบ SQL Injection โดยการปรับเปลี่ยนค่า id สามารถเปลี่ยน
ความหมายของค าสั่ง SQL ให้ดึงข้อมูลทั้งหมดจากตารางหรือแม้กระทั่งแก้ไข
หรือลบข้อมูลได้ นอกจากนี้ยังสามารถเรียกใช้ Stored Procedures ที่เป็น
อันตรายได้

วิธีที่แนะน าในการป้องกัน SQL Injection คือการใช้ API แทนการใช้ Parameter โดยตรง
จัดหาการเชื่อมต่อแบบพารามิเตอร์ เพื่อให้มั่นใจว่าการจัดการข้อมูลเป็นไปอย่างปลอดภัยและ
มีประสิทธิภาพ

ใช้การตรวจสอบข้อมูล input ฝั่งเซิร์ฟเวอร์ แทนที่การตรวจสอบที่ client (web-browser)

ส าหรับค าสั่งแบบไดนามิกที่เหลืออยู่ ให้ท าการสร้าง whitelist อักขระพิเศษโดยใช้การสร้าง
ชุด whitelist ที่เฉพาะเจาะจงส าหรับตัวแปลนั้นๆ

วิธีการแก้ไข และป้องกัน

ใช้ LIMIT และการควบคุม SQL อื่น ๆ ภายในค าสั่งเพื่อป้องกันการเปิดเผยข้อมูลจ านวนมาก
ในกรณีที่เกิด SQL Injection

06
A6 - Insecure Design (การออกแบบที่ไม่ปลอดภัย)

ช่องโหว่ท่ีเกิดจากการออกแบบแอปพลิเคชันที่ไม่ค านึงถึงความปลอดภัย เช่น ขาดการ
พิจารณาด้านความปลอดภัยตั้งแต่ขั้นตอนการออกแบบ ไม่ได้มีการป้องกันรูปแบบการโจมตี
ต่างๆ ที่อาจจะเกิดขึ้นได้กับตัวแอปพลิเคชัน

อ้างอิงตาม : https://owasp.org/Top10/2025/A06_2025-Insecure_Design/

ตัวอย่างการโจมตี

Scenario #1:

Scenario #2:

การใช้ “questions and answers” ในการยืนยันตัวตน เป็นการยืนยันตัวตนที่ไม่
ปลอดภัย และไม่สามารถยืนยันความเป็นเจ้าของของบัญชีนั้นได้จริง

โรงภาพยนตร์โปรโมชั่นมีส่วนลดส าหรับการจองแบบกลุ่มและก าหนดให้มีผู้เข้าชม
สูงสุดสิบห้าคนโดยไม่ต้องมัดจ า ผู้โจมตีสามารถหาช่องโหว่จากออกแบบที่ผิดพลาด
และพบว่าสามารถจองที่นั่งหกร้อยที่นั่งและทุกโรงภาพยนตร์ในครั้งเดียวด้วยการ
ร้องขอเพียงไม่กี่ครั้ง ซึ่งท าให้เกิดการสูญเสียรายได้อย่างมหาศาล
Scenario #3:
แอปธนาคารยอมให้ผู้ใช้ใส่จ านวนเงินที่มีค่า ติดลบ เข้าไปได้ท าให้จากจะโอนเงินไป
หาเป้าหมาย กลายเป็นไปดึงเงินจากเป้าหมายมาแทน

การเชื่อมต่อด้านความปลอดภัยและการควบคุมความปลอดภัยเข้ากับ User
Stories เป็นสิ่งส าคัญในการพัฒนาซอฟต์แวร์ที่ปลอดภัย

การตรวจสอบความน่าเชื่อถือในแต่ละชั้นของแอปพลิเคชัน (จาก frontend ถึง
backend)

จ ากัดการใช้งาน Resource โดยผู้ใช้งานหรือเซอร์วิสของแอปพลิเคชัน

วิธีการแก้ไข และป้องกัน

ด าเนินการจัดตั้งการท า secure development lifecycle กับผู้เชี่ยวชาญด้าน ความ
ปลอดภัยด้านแอปพลิเคชันในการประเมินความปลอดภัยในการออกแบบแอปพลิเคชัน

07
A7 - Authentication Failures
(การระบุตัวตนและการตรวจสอบสิทธิ์ที่ล้มเหลว)
ช่องโหว่ที่เกิดจากการจัดการการระบุตัวตนและการตรวจสอบสิทธิ์ที่ไม่ปลอดภัย เช่น การใช้รหัสผ่านท่าคาดเดาง่าย
หรือการจัดการเซสชันที่ไม่ปลอดภัย

อ้างอิงตาม : https://owasp.org/Top10/2025/A07_2025-Authentication_Failures/

ตัวอย่างการโจมตี

Scenario #1:

Scenario #2:

การใช้ password ที่คาดเดาง่าย ไม่มีการเปลี่ยน password เป็นประจ า หรือไม่มี
policy ในการตั้ง password มักจะถูกโจมตีได้ง่าย เนื่องจากสามารถคาดเดา
password ได้ง่าย

การตั้งค่าเวลาหมดอายุของเซสชั่นในแอปพลิเคชั่นไม่ถูกต้อง ผู้ที่ใช้คอมพิวเตอร์
สาธารณะเพื่อเข้าถึงแอปพลิเคชั่น แทนที่จะเลือก "ออกจากระบบ" ผู้ใช้จะปิดแท็บ
บราวเซอร์และเดินออกไป หากมีผู้ไม่ประสงค์ดีเข้ามาใช้คอมพิวเตอร์สาธารณะ
เครื่องนั้นต่อ สามารถใช้แอปพลิเคชันที่เซสชั่นยังไม่หมดอายุของผู้ใช้งานได้

ควรใชก้ารตรวจสอบบญัชีแบบหลายปัจจยั (multi-factor authentication - MFA)
เพ่ือปอ้งกนัการโจมตีประเภท Brute force และการน าขอ้มลูเขา้รหสัที่ถกูขโมยไปมาใชใ้นการเขา้ระบบ

หา้มแชร ์Password กบัผูอ่ื้น โดยเฉพาะส าหรบัผูใ้ชแ้อดมนิ

จ ากดัหรอืเพิ่มระยะเวลาในการพยายามเขา้สูร่ะบบ ในกรณีท่ีเขา้ระบบลม้เหลว

วิธีการแก้ไข และป้องกัน

08 A8 - Software and Data Integrity Failures
(การล้มเหลวของความสมบูรณ์ของซอฟต์แวร์และข้อมูล)

ช่องโหว่ที่เกิดจากการขาดการตรวจสอบความสมบูรณ์ของซอฟต์แวร์และข้อมูล เช่น
การอัปเดตซอฟต์แวร์จากแหล่งที่ไม่เชื่อถือ ท าให้ในโค๊ดที่อัปเดทนั้น มีการฝังโค๊ด
อันตรายที่ท าให้ผู้ไม่ประสงค์ดีสามารถก่อความเสียหายต่อระบบได้

อ้างอิงตาม : https://owasp.org/Top10/2025/A08_2025-Software_or_Data_Integrity_Failures/

ตัวอย่างการโจมตี

Scenario #1:

Scenario #2:

อุปกรณ์อย่างเราเตอร์หรือกล่องทีวี มักขาดระบบตรวจสอบความปลอดภัยขณะอัปเดต (Unsigned
Firmware) ท าให้ผู้บุกรุกสามารถส่งไฟล์ปลอมเข้าไปควบคมุเครื่องได้ง่าย ซึ่งปัญหานี้แก้ไขยาก เพราะ
ต้องรออัปเดตใหญ่ในอนาคตหรือรอจนกว่าคนจะเลิกใช้เครื่องรุ่นนั้นไปเอง

ผู้โจมตีเข้าถึงระบบ Build System (เช่น Jenkins หรือ GitHub Actions) และแอบแก้ไขสคริปต์ที่ใช้
ในการ Compile ซอฟต์แวร์ แม้โค้ดต้นฉบับจะปลอดภัย แต่ซอฟต์แวร์ตัวสุดท้าย (Artifact) ที่ถูก
ส่งออกไปหาลูกค้ากลับมี Backdoor ฝังอยู่ เพราะไม่มีการตรวจสอบความถูกต้องของไฟล์ในทุก
ขั้นตอนของ Pipeline

ใช้ digital signatures ในการยืนยันว่า ซอฟต์แวร์หรือข้อมูลมาจากแหล่งที่ถูกต้อง
และไม่ได้ถูกแก้ไข

ตรวจสอบให้แน่ใจว่า libraries และ dependencies เช่น npm หรือ Maven ที่ใช้
งานมาจากแหล่งที่เชื่อถือได้

ตรวจสอบให้แน่ใจว่ามีกระบวนการตรวจสอบ (Review Process) ส าหรับการ
เปลี่ยนแปลงโค้ดและการตั้งค่า เพื่อลดโอกาสที่โค้ดหรือการตั้งค่าที่เป็นอันตรายจะ
ถูกน าเข้าสู่ซอฟต์แวร์ของคุณ

วิธีการแก้ไข และป้องกัน

09A09 - Security Logging & Alerting Failures
(การบันทึกและการตรวจสอบความปลอดภัยที่ล้มเหลว)

ช่องโหว่ที่เกิดจากการขาดการบันทึกและการตรวจสอบกิจกรรมที่ส าคัญ เช่น
การไม่มีการบันทึกเหตุการณ์ที่ส าคัญ (Logging)
หรือการไม่ตรวจสอบการแจ้งเตือนความปลอดภัย (Alert)

อ้างอิงตาม : https://owasp.org/Top10/2025/A09_2025-Security_Logging_and_Alerting_Failures/

ตัวอย่างการโจมตี
Scenario #1:

Scenario #2:

ระบบบันทึกเฉพาะการเข้าสู่ระบบที่ส าเร็จ แต่ ไม่บันทึก การเข้าสู่ระบบที่ล้มเหลว
(Failed Logins ท าใหผู้โจมตีสามารถใช้วิธี Brute Force หรือ Credential Stuffing
ลองรหัสผ่านไปเรื่อยๆ ได้หลายล้านครั้งโดยที่ทีม Security ไม่เห็นความผิดปกติใน Log
เลย

สิทธิ์ในการเข้าถึงไฟล์ Log ไม่ได้รับการป้องกันที่ดีพอ เมื่อแฮก็เกอร์เจาะระบบได้ส าเร็จ
สิ่งแรกที่เขาจะท าคือ "ลบประวัต"ิ เพื่อปกปิดร่องรอย หากเราไม่มกีารท า Log Integrity
หรือส่ง Log ไปยัง Storage ที่เขียนได้อย่างเดียว เราจะไม่สามารถท า Digital Forensics
เพื่อหาต้นตอได้เลย

ตรวจสอบให้แน่ใจว่าการเข้าสู่ระบบ การเข้าถึงข้อมูล และรวมถึง Error ที่เกิดขึ้น
สามารถตรวจสอบข้อมูลอินพุตฝั่งเซิร์ฟเวอร์ทั้งหมดสามารถบันทึกได้พร้อมกับบริบท
ของผู้ใช้ที่เพียงพอเพื่อระบุบัญชีที่น่าสงสัยหรือเป็นอันตราย และเก็บรักษาข้อมูลนี้ไว้
นานพอเพื่อให้สามารถวิเคราะห์ทางนิติเวชในภายหลังได้

ตรวจสอบให้แน่ใจว่าการบันทึกข้อมูลถูกสร้างในรูปแบบที่โซลูชันการจัดการ Log
สามารถน าไปใช้ได้อย่างง่ายส าหรับอุปกรณ์ที่ใช้ในการวิเคราะห์ข้อมูล

ตรวจสอบให้แน่ใจว่าข้อมูล Log ได้มีการเข้ารหัสอย่างถูกต้อง เพื่อป้องกันไม่ให้มีการ
โจมตีระบบเก็บข้อมูลหรือระบบที่ใช้ในการวิเคราะห์ข้อมูล

วิธีการแก้ไข และป้องกัน

10
A10 - Mishandling of Exceptional Conditions
(การรับมือความผิดปกติที่ผิดพลาด)
ขอ้บกพรอ่งในการปอ้งกนั, ตรวจจบั, และตอบสนองตอ่สถานการณท่ี์ไม่ปกติหรอืไม่คาดคิดใน
ระบบ ซึง่อาจน าไปสูช่่องโหวด่า้นความปลอดภยั, ระบบลม่, หรอืพฤติกรรมท่ีไม่พงึประสงค์

อ้างอิงตาม : https://owasp.org/Top10/2025/A10_2025-Mishandling_of_Exceptional_Conditions/

ตัวอย่างการโจมตี

Scenario #1:

Scenario #2:

เมื่อระบบเกิด Error (เช่น Database เชื่อมต่อไม่ได้ หรือ Query ผิดพลาด) หน้า
จอแสดงผลกลับ Stack Trace, ชื่อ Table, เวอร์ชันของซอฟต์แวร์ หรือแม้แต่ File Path
ในเซิร์ฟเวอร์ออกมาให้ผู้ใชเ้ห็น ผู้โจมตสามารถใช้ข้อมูลดังกล่าวในการโจมตีได้

ระบบมีการเช็คสิทธิ์ (Authorization) ก่อนเข้าถึงข้อมูล แต่เกิด Exception ในระหว่าง
กระบวนการเช็คสิทธิ์นั้นพอดี หากโค้ดเขียนไว้ไม่รัดกุม ระบบอาจจะข้ามขั้นตอนการเช็ค
ไปและอนุญาตให้ผู้ใช้เข้าถึงข้อมูลได้เลย

Scenario #3:
แอปพลิเคชันมีการตั้งให้ดักการอัปโหลดไฟล์ แต่ไม่ปล่อยไฟล์ที่ถูกดักไว้มีมาก
เกินไปท าให้ทรัพยากรถูกใช้ไปจนหมด ท าให้เกิด Denial of Service - DoS

ใช้ Rate Limiting, Resource Quotas เพื่อป้องกันสภาวะผิดปกติ ตั้งแต่ต้นทาง

แสดงข้อความ Error แบบทั่วไปให้ผู้ใช้เห็น เช่น "เกิดข้อผิดพลาด กรุณาลองใหม่
ภายหลัง" ส่วนรายละเอียดเชิงเทคนิคให้เก็บไว้ใน Log ภายในเท่านั้น

วิธีการแก้ไข และป้องกัน

ตรวจสอบอินพุตอย่างเข้มงวด (Strict Input Validation) รวมถึงการกรอง
หรือการหลีกเลี่ยงอักขระที่เป็นอันตราย

ตรวจสอบให้แน่ใจว่าเมื่อเกิด Exception ระบบได้ท าการปิด Connection หรือ
คืน Memory อย่างถูกต้อง เพื่อป้องกันการโจมตีแบบ Denial of Service
(DoS) จากการที่ทรัพยากรถูกใช้จนหมด

แนวทางที่ควรด าเนินการส าหรบัการพฒันาแอปพลเิคชนัอย่างปลอดภยั

ต้องการผู้พัฒนาที่ความความเข้าใจในด้าน

ความปลอดภัยในการพัฒนาแอปพลิเคชัน
ต้องการการตรวจสอบองค์ประกอบว่า

องค์ประกอบที่น ามาใช้ น ามาใช้อย่างถูกต้อง

หรือมีช่องโหว่หรือไม่

องค์ประกอบของ Software ที่น ามาใช้ในการ

พัฒนามีความซับซ้อนมากขึ้น

ต้องการเข้าใจในส่วนของทั้งการพัฒนาแอป

พลิเคชันและการตั้งค่าของคลาวด์

จ านวนแอปพลิเคชันมากขึ่น จ านวนทีมผู้พัฒนา

มากขึ้น ต้องการแอปพลิเคชันเร็วข้ึน
คลาวด์เป็นส่วนหนึ่งการการพัฒนาแอปพลิเคชัน

App code

Dependencies

App code

Dependencies

Containers

Network

Kubernetes

Cloud

รูปแบบการพัฒนาแอปพลิเคชันได้เปลี่ยนไปแล้ว

แนวทางที่ควรด าเนินการส าหรบัการพฒันาแอปพลเิคชนัอยา่งปลอดภยั

ตรวจสอบการพัฒนาแอปพลิเคชัน เช่น ท า Pentest

ตรวจสอบ Operating
System เช่น ท า
Vulnerability
Assessmentข้อเสีย

• การตรวจสอบท าช้าเกินไป
• จ าเป็นต้องมีผู้เชี่ยวชาญเข้ามาเกี่ยวข้อง
• หากพบปัญหา อาจจะท าให้การส่งงานล่าช้า

แนวทางที่ควรด าเนินการส าหรบัการพฒันาแอปพลเิคชนัอยา่งปลอดภยั

ตรวจสอบการพัฒนาแอปพลิเคชัน เช่น ท า Pentest

ตรวจสอบ Operating
System เช่น ท า
Vulnerability
Assessment

ข้อดี
• พบช่องโหว่ในขณะที่ด าเนินการพัฒนา
• ผู้พัฒนาสามารถแก้ไขช่องโหว่ได้เอง ไม่ต้อง

รอให้ผู้เชี่ยวชาญมาตรวจสอบ
• ช่องโหว่ท่ีตรวจสอบจากการท า Pentest,

VA ลดลง ท าให้แผนการส่งมอบมีโอกาส
เลื่อนได้น้อย

IDE
scan

Code
audit
“shifted
left”

แนวทางที่ควรด าเนินการส าหรบัการพฒันาแอปพลเิคชนัอยา่งปลอดภยั

Dev-First

A modern approach to security is required

Holistic Cloud Native
Application Context

Fix Based

Continuous TestingTesting after development

Traditional App Sec

Audit Based

Code and Infrastructure
Secured Independently

แนวทางที่ควรด าเนินการส าหรบัการพฒันาแอปพลเิคชนัอยา่งปลอดภยั

https://owasp.org/www-project-web-security-testing-guide/assets/archive/OWASP_Web_Application_Penetration_Checklist_v1_1.pdf

OWASP ZAP (ZAP Proxy)

OWASP Zed Attack Proxy (ZAP) เป็นเครื่องมือ Web Proxy อีกหนึ่งตัวท่ีนิยมใช้กันท่ัวไปส าหรับการทดสอบเจาะระบบเว็บ (Web Penetration
Testing)

ZAP เป็นโปรเจกต์ Open-source ท่ีเปิดให้ใช้งานฟรี ริเริ่มโดย Open Web Application Security Project (OWASP) และได้รับการดูแลรักษาโดย
ชุมชนนักพัฒนา ซึ่งในช่วงไม่กี่ปีที่ผ่านมาเครื่องมือนี้มีการเติบโตอย่างมาก และก าลังได้รับการยอมรับในตลาดอย่างรวดเร็วในฐานะผู้น าด้านเครื่องมือ Web Proxy แบบ
Open-source ในปัจจุบัน ถูกบริษัทท่ีชื่อว่า Checkmarx ด าเนินการซื้อไป แต่ยังคงปล่อยให้มีการใช้ฟรีอยู่

OWASP ZAP

เราสามารถดาวน์โหลด ZAP ได้จากหน้าดาวน์โหลด (https://www.zaproxy.org/download/) โดยเลือกตัวติดตั้ง (Installer) ท่ีตรงกับ
ระบบปฏิบัติการท่ีเราใช้ และปฏิบัติตามค าแนะน าพื้นฐานเพื่อท าการติดตั้งนอกจากนี้

ZAP ยังมีให้ดาวน์โหลดในรูปแบบไฟล์ JAR ท่ีรองรับการท างานข้ามแพลตฟอร์ม (Cross-platform) ซึ่งสามารถเปิดใช้งานได้ด้วยค าสั่ง java -jar หรือ
โดยการดับเบิลคลิกที่ไฟล์ดังกล่าว

OWASP ZAP

ในการเร่ิมต้นใช้งาน ZAP เราสามารถเปิดโปรแกรมผ่าน Terminal ด้วยค าสั่ง zaproxy หรือเรียกใช้จากเมนูแอปพลิเคชันได้
เมื่อ ZAP เร่ิมท างาน จะมีหน้าต่างสอบถามว่าเราต้องการสร้างโปรเจกต์ใหม่หรือใช้เป็นโปรเจกต์ชั่วคราว ในท่ีนี้ให้เราเลือกใชโ้ปรเจกต์ชั่วคราวโดยเลือก No เนื่องจากเรา
ไม่ได้ก าลังท างานกับโปรเจกต์ขนาดใหญ่ท่ีจ าเป็นต้องบันทึกข้อมูลเก็บไว้ใช้งานต่อเนื่องหลายวัน

OWASP ZAP

การตั้งค่า Proxy
ใน ZAP เราสามารถคลิกท่ีไอคอนเบราว์เซอร์ Firefox ท่ีอยู่ตรงด้านขวาสุดของแถบด้านบน เพ่ือเปิดเบราว์เซอร์ท่ีถูกตั้งค่าไว้ล่วงหน้าขึ้นมาได้ทันที:

ในหลายๆ กรณี เราอาจต้องการใช้เว็บเบราว์เซอร์จริงๆ เช่น Firefox ในการท า Pentest ซึ่งการจะใช้งาน Firefox ร่วมกับเครื่องมือ Web Proxy นั้น เราจ าเป็นต้อง
เข้าไปตั้งค่าใหเ้บราว์เซอร์วิ่งผ่าน Proxy เหล่านั้นเสียก่อน เราสามารถเข้าไปก าหนดค่าเองได้ที่เมนูการตั้งค่า (Preferences) ของ Firefox เพ่ือระบุ Proxy ให้ตรงกับ
Listening Port ของ Web Proxy นั้นๆโดยปกติแล้ว ZAP จะใช้พอร์ต 8080 เป็นค่าเริ่มต้น แต่เราสามารถเลือกใช้พอร์ตอื่นๆ ท่ีว่างอยู่ได้เช่นกัน แต่หากเราเลือกพอร์ต
ที่ก าลังถูกใช้งานอยู่ Proxy จะไม่สามารถเร่ิมท างานได้และจะมีข้อความแจ้งเตือนข้อผิดพลาด (Error message) ปรากฏขึ้นหมายเหตุ: หากเราต้องการเปลี่ยนพอร์ต
ของ Web Proxy ในโปรแกรม ZAP ไปเป็นพอร์ตอื่น เราสามารถเข้าไปตั้งค่าได้ท่ีเมนู (Tools > Options > Network > Local Servers/Proxies) ซึ่งไม่ว่าจะใช้พอร์ต
ไหน เราต้องตรวจสอบให้แน่ใจว่าการตั้งค่า Proxy ใน Firefox นั้นระบุหมายเลขพอร์ตตรงกันกับท่ีตั้งไว้

OWASP ZAP

การติดตั้งใบรับรองความปลอดภัย (CA Certificate)
ใน ZAP เราสามารถคลิกท่ีไอคอนเบราว์เซอร์ Firefox ท่ีอยู่ตรงด้านขวาสุดของแถบด้านบน เพ่ือเปิดเบราว์เซอร์ท่ีถูกตั้งค่าไว้ล่วงหน้าขึ้นมาใช้งานได้เลย:

OWASP ZAP

ZAP Scanner

ZAP ยังมาพร้อมกับ Web Scanner ในตัว โดย ZAP Scanner นั้นมีความสามารถในการสร้างแผนผังเว็บไซต์ (Site Maps) ด้วยการใช้ ZAP Spider และสามารถท า
การสแกนได้ทั้งแบบ Passive และ Active เพื่อค้นหาช่องโหว่ประเภทต่างๆ

OWASP ZAP

Spider

มาเริ่มกันที่ ZAP การจะเริ่มใช้งาน Spider สแกนเว็บไซต์นั้น เราสามารถท าได้โดยไปท่ีแท็บ History เลือก Request ท่ีต้องการ แล้วคลิกขวาเลือกเมนู (Attack >
Spider) อีกวิธีหนึ่งคือการใช้งานผ่าน HUD บนเบราว์เซอร์ท่ี ZAP ตั้งค่ามาให้ เมื่อเราเข้าไปยังหน้าเว็บหรือเว็บไซต์ที่ต้องการสแกนแล้ว ให้คลิกที่ปุ่มท่ีสองบนแถบ
ด้านขวา (Spider Start) ระบบจะแสดงหน้าต่างขึ้นมาเพื่อให้เรายืนยันการเริ่มสแกน:

หมายเหตุ: เมื่อเราคลิกที่ปุ่ม Spider โปรแกรม ZAP อาจแจ้งเตือนว่าเว็บไซต์ปัจจุบันไม่ได้อยู่ในขอบเขต (Scope) ของเรา และจะถามว่าเราต้องการเพิ่ม
เว็บไซต์นี้เข้าไปใน Scope โดยอัตโนมัติก่อนเริ่มสแกนหรือไม่ ซึ่งในกรณีนี้เราสามารถตอบว่า 'Yes' ไดเ้ลย Scope คือชุดของ URL ท่ี ZAP จะท าการทดสอบ
หากเราเริ่มการสแกนแบบทั่วไป ซึ่งเราสามารถปรับแต่ง Scope ได้เองเพื่อก าหนดให้สแกนหลายเว็บไซต์หรือหลาย URL พร้อมกัน ลองฝึกเพิ่มเป้าหมาย
(Targets) หลายๆ แห่งเข้าไปใน Scope ดู เพื่อสังเกตความแตกต่างในการท างานของการสแกน

OWASP ZAP

ทันทีท่ีเราคลิกปุ่ม Start บนหน้าต่าง Pop-up ระบบจะเร่ิมท าการ Spider เว็บไซต์ โดยจะค้นหาลิงก์ต่างๆ และตรวจสอบความถูกต้อง ซึ่งกระบวนการนี้จะคล้ายคลึงกับการท างาน
ของ Burp Crawlerเราสามารถติดตามความคืบหน้าของการสแกนได้ทั้งจาก HUD บริเวณปุ่ม Spider หรือผ่านหน้าจอหลัก (ZAP UI) ซึ่งปกติแล้วโปรแกรมจะสลับไปยังแท็บ
Spider ให้โดยอัตโนมัติ เพ่ือแสดงสถานะความคืบหน้าและ Request ต่างๆ ท่ีถูกส่งออกไปเมื่อการสแกนเสร็จสิ้น เราสามารถตรวจสอบผลลัพธ์ได้ท่ีแท็บ Sites บนหน้าจอหลักของ
ZAP หรือคลิกที่ปุ่มแรกบนแถบด้านขวา (Sites Tree) บน HUD ซึ่งจะแสดงรายการเว็บไซต์และไดเรกทอรีย่อยท้ังหมดที่ตรวจพบในรูปแบบโครงสร้างต้นไม้ (Tree-list) ท่ีสามารถกด
ขยายดูรายละเอียดได้

OWASP ZAP

Passive Scanner

ในขณะท่ี ZAP Spider ก าลังท างานและส่ง Request ไปยัง Endpoint ต่างๆ ระบบจะท าการรัน Passive Scanner ไปพร้อมกันโดยอัตโนมัติในทุกๆ Response ท่ี

ได้รับ เพื่อตรวจสอบหาปัญหาท่ีอาจซ่อนอยู่ใน Source Code เช่น การขาด Security Headers หรือช่องโหว่ประเภท DOM-based XSSด้วยเหตุนี้ แม้ว่าเราจะยัง

ไม่ได้เร่ิมรัน Active Scanner แต่เราอาจเห็นว่าปุ่มแจ้งเตือน (Alerts) เริ่มแสดงรายการปัญหาท่ีตรวจพบขึ้นมาบ้างแล้ว โดยการแจ้งเตือนบนแถบด้านซ้ายจะแสดง

ปัญหาท่ีพบในหน้าเว็บปัจจุบันท่ีเราก าลังเปิดอยู่ ส่วนแถบด้านขวาจะแสดงภาพรวมของการแจ้งเตือนทั้งหมดในเว็บแอปพลิเคชันนั้น ซึ่งรวมถึงปัญหาท่ีตรวจพบบน

หน้าอ่ืนๆ ด้วย:

OWASP ZAP

Active Scanner

เมื่อข้อมูลใน Site Tree ของเราแสดงขึ้นมาแล้ว เราสามารถคลิกท่ีปุ่ม Active Scan บนแถบด้านขวาเพ่ือเริ่มการสแกนแบบ Active บนหน้าเว็บท้ังหมดที่ตรวจพบ
หากเรายังไม่ได้ท าการรัน Spider Scan บนเว็บแอปพลิเคชันมาก่อน ZAP จะท าการรัน Spider ให้โดยอัตโนมัติเพื่อสร้าง Site Tree ส าหรับใช้เป็นเป้าหมายในการ
สแกน และเมื่อ Active Scan เริ่มท างาน เราสามารถติดตามความคืบหน้าได้ในลักษณะเดียวกับตอนท่ีเราท า Spider Scan

OWASP ZAP

Active Scanner จะพยายามใช้รูปแบบการโจมตีท่ีหลากหลายกับหน้าเว็บและ HTTP Parameters ท้ังหมดที่ระบุได้ เพ่ือค้นหาช่องโหว่ให้ได้มากที่สุดเท่าท่ีจะท าได้
ด้วยเหตุนี้การท างานของ Active Scanner จึงใช้เวลานานกว่าจะเสร็จส้ินในขณะท่ี Active Scan ก าลังท างาน เราจะเห็นว่าปุ่มแจ้งเตือน (Alerts) เร่ิมมีรายการแจ้ง
เตือนเพิ่มมากขึ้นเร่ือยๆ ตามจ านวนปัญหาท่ี ZAP ตรวจพบ ย่ิงไปกว่านั้น เราสามารถตรวจสอบรายละเอียดเพิ่มเติมเกี่ยวกับการสแกนที่ก าลังท างานอยู่ได้ท่ีหน้าจอ
หลัก (ZAP UI) และสามารถดู Request ต่างๆ ท่ี ZAP ส่งออกไปได้:

OWASP ZAP

เมื่อการท างานของ Active Scan เสร็จสิ้น เราสามารถเข้าไปดูรายการแจ้งเตือน (Alerts) เพ่ือพิจารณาว่ารายการใดบ้างท่ีควรต้องติดตามผลต่อแม้ว่าการแจ้งเตือน
ท้ังหมดควรถูกรายงานและน ามาพิจารณา แต่การแจ้งเตือนระดับสูง (High Alerts) นั้นมักจะเป็นช่องโหว่ท่ีน าไปสู่การถูกยึดครอง (Compromise) เว็บแอปพลิเคชัน
หรือ Back-end Server ได้โดยตรงหากเราคลิกที่ปุ่ม High Alerts ระบบจะแสดงรายการแจ้งเตือนระดับความรุนแรงสูงท่ีตรวจพบขึ้นมา:

OWASP ZAP

บนหน้าต่างรายละเอียดการแจ้งเตือน (Alert details window) เรายังสามารถคลิกที่ URL เพ่ือดูรายละเอียดของ Request และ Response ท่ี ZAP ใช้ในการ
ตรวจสอบพบช่องโหว่นี้ และเรายังสามารถท าการส่ง Request นี้ซ้ า (Repeat) ผ่านทาง ZAP HUD หรือ ZAP Request Editor ได้อีกด้วย:

OWASP ZAP

การออกรายงาน (Reporting)

ในขั้นตอนสุดท้าย เราสามารถสร้างรายงาน (Report) ท่ีรวบรวมสิ่งท่ีตรวจพบ (Findings) ทั้งหมดจากการสแกนรูปแบบต่างๆ ของ ZAP ได้ โดยไปท่ีแถบเมนูด้านบน
แล้วเลือก (Report > Generate HTML Report) จากนั้นระบบจะให้เราระบุต าแหน่งที่ต้องการบันทึกไฟล์รายงานนอกจากนี้ เรายังสามารถส่งออก (Export)
รายงานในรูปแบบอื่นๆ ได้อีก เช่น XML หรือ Markdown เมื่อสร้างรายงานเสร็จเรียบร้อยแล้ว เราสามารถเปิดดูไฟล์ดังกล่าวผ่านเว็บเบราว์เซอร์ใดก็ได้:

OWASP ZAP

ZAP Marketplace

ZAP ยังมีฟีเจอร์ในการขยายความสามารถ (Extensibility) เป็นของตัวเองผ่านทาง Marketplace ซึ่งช่วยให้เราสามารถติดตั้ง Add-ons ประเภทต่างๆ ท่ีถูกพัฒนา
โดยชุมชนผู้ใช้งานได้ในการเข้าถึง Marketplace ของ ZAP ให้เราคลิกท่ีปุ่ม Manage Add-ons จากนั้นเลือกไปท่ีแท็บ Marketplace:

Snyk Code

Snyk Code

Snyk Code

Snyk Code

Snyk Code

ตอบค าถามผู้เข้าอบรม

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 101
	Slide 102

